3.321 \(\int \frac {\tan ^3(e+f x)}{\sqrt {a+b \tan ^2(e+f x)}} \, dx\)

Optimal. Leaf size=64 \[ \frac {\sqrt {a+b \tan ^2(e+f x)}}{b f}+\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \tan ^2(e+f x)}}{\sqrt {a-b}}\right )}{f \sqrt {a-b}} \]

[Out]

arctanh((a+b*tan(f*x+e)^2)^(1/2)/(a-b)^(1/2))/f/(a-b)^(1/2)+(a+b*tan(f*x+e)^2)^(1/2)/b/f

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 64, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3670, 446, 80, 63, 208} \[ \frac {\sqrt {a+b \tan ^2(e+f x)}}{b f}+\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \tan ^2(e+f x)}}{\sqrt {a-b}}\right )}{f \sqrt {a-b}} \]

Antiderivative was successfully verified.

[In]

Int[Tan[e + f*x]^3/Sqrt[a + b*Tan[e + f*x]^2],x]

[Out]

ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]/Sqrt[a - b]]/(Sqrt[a - b]*f) + Sqrt[a + b*Tan[e + f*x]^2]/(b*f)

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 3670

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[(c*ff)/f, Subst[Int[(((d*ff*x)/c)^m*(a + b*(ff*x)^n)^p)/(c^
2 + ff^2*x^2), x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rubi steps

\begin {align*} \int \frac {\tan ^3(e+f x)}{\sqrt {a+b \tan ^2(e+f x)}} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {x^3}{\left (1+x^2\right ) \sqrt {a+b x^2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac {\operatorname {Subst}\left (\int \frac {x}{(1+x) \sqrt {a+b x}} \, dx,x,\tan ^2(e+f x)\right )}{2 f}\\ &=\frac {\sqrt {a+b \tan ^2(e+f x)}}{b f}-\frac {\operatorname {Subst}\left (\int \frac {1}{(1+x) \sqrt {a+b x}} \, dx,x,\tan ^2(e+f x)\right )}{2 f}\\ &=\frac {\sqrt {a+b \tan ^2(e+f x)}}{b f}-\frac {\operatorname {Subst}\left (\int \frac {1}{1-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b \tan ^2(e+f x)}\right )}{b f}\\ &=\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \tan ^2(e+f x)}}{\sqrt {a-b}}\right )}{\sqrt {a-b} f}+\frac {\sqrt {a+b \tan ^2(e+f x)}}{b f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.28, size = 62, normalized size = 0.97 \[ \frac {\frac {\sqrt {a+b \tan ^2(e+f x)}}{b}+\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \tan ^2(e+f x)}}{\sqrt {a-b}}\right )}{\sqrt {a-b}}}{f} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[e + f*x]^3/Sqrt[a + b*Tan[e + f*x]^2],x]

[Out]

(ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]/Sqrt[a - b]]/Sqrt[a - b] + Sqrt[a + b*Tan[e + f*x]^2]/b)/f

________________________________________________________________________________________

fricas [A]  time = 0.54, size = 248, normalized size = 3.88 \[ \left [\frac {\sqrt {a - b} b \log \left (-\frac {b^{2} \tan \left (f x + e\right )^{4} + 2 \, {\left (4 \, a b - 3 \, b^{2}\right )} \tan \left (f x + e\right )^{2} + 4 \, {\left (b \tan \left (f x + e\right )^{2} + 2 \, a - b\right )} \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {a - b} + 8 \, a^{2} - 8 \, a b + b^{2}}{\tan \left (f x + e\right )^{4} + 2 \, \tan \left (f x + e\right )^{2} + 1}\right ) + 4 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} {\left (a - b\right )}}{4 \, {\left (a b - b^{2}\right )} f}, -\frac {\sqrt {-a + b} b \arctan \left (\frac {2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {-a + b}}{b \tan \left (f x + e\right )^{2} + 2 \, a - b}\right ) - 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} {\left (a - b\right )}}{2 \, {\left (a b - b^{2}\right )} f}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^3/(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/4*(sqrt(a - b)*b*log(-(b^2*tan(f*x + e)^4 + 2*(4*a*b - 3*b^2)*tan(f*x + e)^2 + 4*(b*tan(f*x + e)^2 + 2*a -
b)*sqrt(b*tan(f*x + e)^2 + a)*sqrt(a - b) + 8*a^2 - 8*a*b + b^2)/(tan(f*x + e)^4 + 2*tan(f*x + e)^2 + 1)) + 4*
sqrt(b*tan(f*x + e)^2 + a)*(a - b))/((a*b - b^2)*f), -1/2*(sqrt(-a + b)*b*arctan(2*sqrt(b*tan(f*x + e)^2 + a)*
sqrt(-a + b)/(b*tan(f*x + e)^2 + 2*a - b)) - 2*sqrt(b*tan(f*x + e)^2 + a)*(a - b))/((a*b - b^2)*f)]

________________________________________________________________________________________

giac [A]  time = 1.91, size = 62, normalized size = 0.97 \[ -\frac {\frac {b \arctan \left (\frac {\sqrt {b \tan \left (f x + e\right )^{2} + a}}{\sqrt {-a + b}}\right )}{\sqrt {-a + b} f} - \frac {\sqrt {b \tan \left (f x + e\right )^{2} + a}}{f}}{b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^3/(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

-(b*arctan(sqrt(b*tan(f*x + e)^2 + a)/sqrt(-a + b))/(sqrt(-a + b)*f) - sqrt(b*tan(f*x + e)^2 + a)/f)/b

________________________________________________________________________________________

maple [A]  time = 0.30, size = 58, normalized size = 0.91 \[ \frac {\sqrt {a +b \left (\tan ^{2}\left (f x +e \right )\right )}}{b f}-\frac {\arctan \left (\frac {\sqrt {a +b \left (\tan ^{2}\left (f x +e \right )\right )}}{\sqrt {-a +b}}\right )}{f \sqrt {-a +b}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(f*x+e)^3/(a+b*tan(f*x+e)^2)^(1/2),x)

[Out]

(a+b*tan(f*x+e)^2)^(1/2)/b/f-1/f/(-a+b)^(1/2)*arctan((a+b*tan(f*x+e)^2)^(1/2)/(-a+b)^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tan \left (f x + e\right )^{3}}{\sqrt {b \tan \left (f x + e\right )^{2} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^3/(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(tan(f*x + e)^3/sqrt(b*tan(f*x + e)^2 + a), x)

________________________________________________________________________________________

mupad [B]  time = 12.33, size = 56, normalized size = 0.88 \[ \frac {\mathrm {atanh}\left (\frac {\sqrt {b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a}}{\sqrt {a-b}}\right )}{f\,\sqrt {a-b}}+\frac {\sqrt {b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a}}{b\,f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(e + f*x)^3/(a + b*tan(e + f*x)^2)^(1/2),x)

[Out]

atanh((a + b*tan(e + f*x)^2)^(1/2)/(a - b)^(1/2))/(f*(a - b)^(1/2)) + (a + b*tan(e + f*x)^2)^(1/2)/(b*f)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tan ^{3}{\left (e + f x \right )}}{\sqrt {a + b \tan ^{2}{\left (e + f x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)**3/(a+b*tan(f*x+e)**2)**(1/2),x)

[Out]

Integral(tan(e + f*x)**3/sqrt(a + b*tan(e + f*x)**2), x)

________________________________________________________________________________________